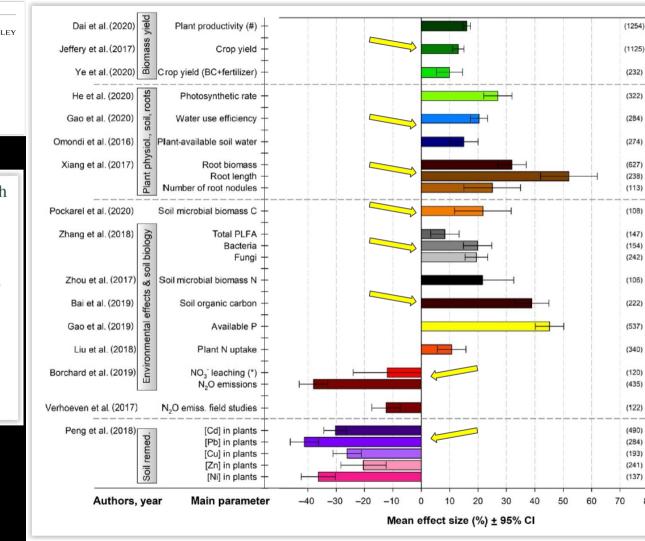


Biochar Sourcing & Usage in Vineyards

Charlie McIntosh Pacific Biochar Benefit Co.

 Received: 22 May 2021
 Revised: 11 August 2021
 Accepted: 12 August 2021


 DOI: 10.1111/g:bb.12889
 'G

 'G
 FESEARCH REVIEW

Biochar in agriculture – A systematic review of 26 global meta-analyses

Hans-Peter Schmidt¹● | Claudia Kammann² | Nikolas Hagemann^{3,4} | Jens Leifeld⁴● | Thomas D. Bucheli⁴ | Miguel Angel Sánchez Monedero⁵ | Maria Luz Cayuela⁵⊙

FIGURE 2 Selected parameters with highest agronomic relevance that were investigated in the 26 reviewed meta-analyses. The mean overall effect size (% change) and 95% confidence intervals are given as reported in the original studies. The numbers in parentheses indicate the number of pairwise comparisons used for that specific parameter

Oasis Vineyard Biochar Trial

California Dept. of Water Resources, University of CaliforniaRiverside, Sonoma Ecology Center, Monterey Pacific Inc, & Pacific Biochar

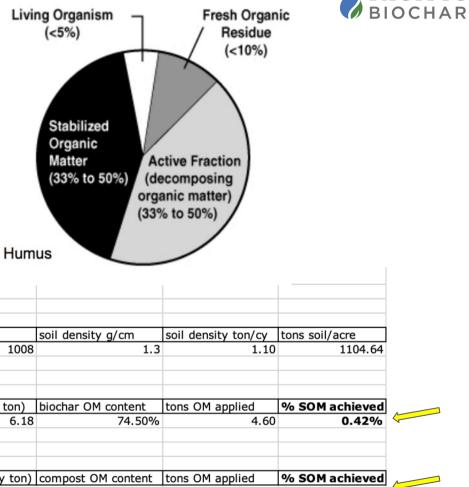
Oasis Vineyard Trial 2017-2020

Treatments:

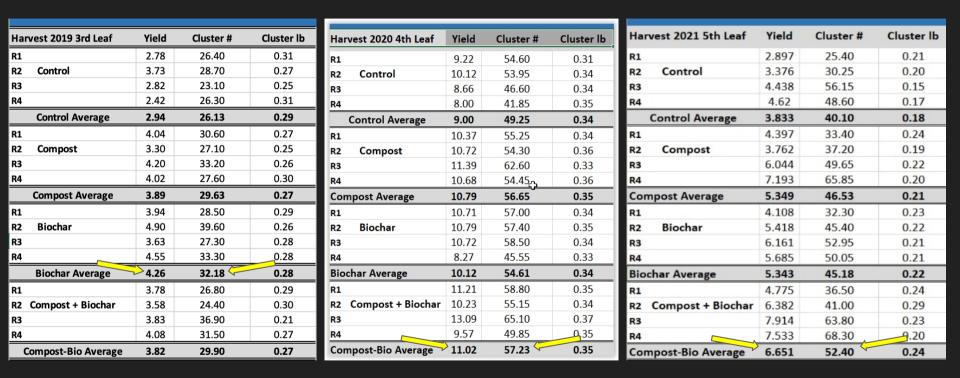
All treatments applied at depth down planting row (delved) in random pattern (4 replicates) across 8 acre trial area with standard annual fertilizer applications across all blocks

- a. Control o tons/acre compost, o tons/acre biochar
- b. Compost 15 15 tons/acre compost
- c. Biochar 10 10 tons/acre biochar
- d. Compost + Biochar 15 tons/acre compost, 10 tons/acre biochar

Treatments + soil prep work done in late 2016



Soil Organic Matter (SOM) Calculations for Biochar and Compost Treatments



PACIFIC

%OM Calculations for Vineyard Treatments

Area_ Soil Volume and	l We	eight				
vine / acre		cu ft / acre	cu yd / acre	soil density g/cm	soil density ton/cy	tons soil/acre
1	089	27225	1008	1.3	1.10	1104.64
Biochar Application Rate_ Ton/acre Input, %OM Output						
biochar applied (wet to	ר)	biochar moisture %	biochar applied (dry ton)	biochar OM content	tons OM applied	% SOM achieved
1	0.00	38%	6.18	74.50%	4.60	0.42%
pplication Rate_Ton/	acro	e Input, %OM Outpu	Jt			
			ut compost applied (dry ton)	compost OM content	tons OM applied	% SOM achieved
	vine / acre 1 plication Rate_ Ton/a biochar applied (wet tor	vine / acre 1089 plication Rate_ Ton/acre biochar applied (wet ton)	1089 27225 plication Rate_ Ton/acre Input, %OM Output biochar applied (wet ton) biochar moisture %	vine / acre cu yd / acre 1089 27225 1008 plication Rate_ Ton/acre Input, %OM Output biochar applied (wet ton) biochar moisture % biochar applied (dry ton)	vine / acre cu ft / acre cu yd / acre soil density g/cm 1089 27225 1008 1.3 plication Rate_ Ton/acre Input, %OM Output biochar moisture % biochar applied (dry ton) biochar OM content	vine / acre cu ft / acre cu yd / acre soil density g/cm soil density ton/cy 1089 27225 1008 1.3 1.10 plication Rate_ Ton/acre Input, %OM Output biochar applied (dry ton) biochar OM content tons OM applied

Tables show data from the first 3 harvests: 2019 - 2021

BIOCHAR

Yield, Percent Above Control, 3 Harvests Compost + Biochar Control Compost Biochar 80.00% 60.00% Percent above control 40.00% 20.00% 0.00% First Harvest Second Harvest Third Harvest

Harvest Years

Yield, Percent Above Control, 3 yr Average Control Compost Biochar Compost + Biochar 50.00% 40.00% -30.00% -20.00% -10.00% 0.00% -

Compost Analysis

Martineta	D 1						D'also in the
Nutrients	Dry wt.	As Rcvd.	units	Stability Indica			Biologically
Total Nitrogen:	1.5	0.79	%	CO2 Evolution		Respirometery	Available C
Ammonia (NH ₄ -N):	18	9.1	mg/kg	mg CO ₂ -C/g Ol	M/day	0.73	1.0
Nitrate (NO ₃ -N):	450	230	mg/kg	mg CO ₂ -C/g TS	S/day	0.31	0.44
Org. Nitrogen (OrgN):	1.5	0.77	%	Stability Rat	ing	very stable	very stable
Phosphorus (as P ₂ O ₅):	3.7	1.9	%				
Phosphorus (P):	16000	8300	mg/kg				
Potassium (as K ₂ O):	7.9	4.1	%	Maturity Indica	ator: Cucum	ber Bioassay	
Potassium (K):	66000	34000	mg/kg	Compost:Vermi	iculite(v:v)	1:2	
Calcium (Ca):	27	14	%	Emergence (%))	93	
Magnesium (Mg):	2.7	1.4	%	Seedling Vigor	(%)	109	
Sulfate (SO ₄ -S):	4000	2000	mg/kg	Description	of Plants	healthy	
Boron (Total B):	110	58	mg/kg				
Moisture:	0	48.7	%				
Sodium (Na):	1.6	0.83	%	Pathogens	Results	Units	Rating
Chloride (CI):	0.83	0.43	%	Fecal Coliform	8.5	MPN/g	pass
pH Value:	NA	7.59	unit	Salmonella	< 3	MPN/4g	pass
Bulk Density :	21	41	lb/cu ft	Date Tested: 20 A	pr. 16		
Carbonates (CaCO ₃):	130	66	lb/ton				
Conductivity (EC5):	13	NA	mmhos/cm				
Organic Matter:	42.5	21.8	%	Inerts	% by weight	t	
Organic Carbon:	⇒22.0	11.0	%	Plastic	< 0.5		
Ash:	57.5	29.5	%	Glass	< 0.5		
C/N Ratio	14	14	ratio	Metal	< 0.5		
AgIndex	5	5	ratio	Sharps	ND		

P per ton Compost at 8,300 ppm is about 17 lb/ton =255 lb P per 15 tons compost or <u>0.26 lb/vine</u>

K per ton Compost at 34,000 ppm is about 68 lb/ton or =1,020 lb K per 15 tons compost or <u>1 lb/vine</u> **Biochar Analysis**

International BioChar Initiative (IBI) Laboratory Tests for Certification Program

		-		-	
	Dry Basis Unless Stated: Ran	ige	Units	Method	
Moisture (time of analysis)	38.2		% wet wt.	ASTM D1762-84 (1	05c)
Bulk Density	10.6		lb/cu ft		
Organic Carbon	68.0		% of total dry mass	Dry Combust-ASTM	1 D 4373
Hydrogen/Carbon (H:C)	0.30 0.7	Max	Molar Ratio	H dry combustion/C	(above)
Total Ash	25.5		% of total dry mass	ASTM D-1762-84	
Total Nitrogen	0.69		% of total dry mass	Dry Combustion	
		Basi	c Soil Enhancement	Properties	
		Tota	l (K)	19554 mg/kg	Е
		Tota	I (P)	2738 mg/kg	Е
		Amm	nonia (NH4-N)	13.4 mg/kg	А
		Nitra	te (NO3-N)	10.2 mg/kg	А
		Orga	anic (Org-N)	6856 mg/kg	Calc.

P per ton Biochar at 2,738 ppm dry weight is about 3 lbs

per ton as delivered

=33 lb P per 10 tons biochar or <u>0.03 lb/vine</u> **K per ton Biochar** at 19,554 ppm dry weight is about 23 lb/ton as delivered

=230 lb K per 10 tons biochar or 0.24 lb/vine

	Titratable A	cidity				
AVERAGES	mg/L	% difference	ST DEV			
Control	6.425	0.00%	0.26			
Compost	6.375	-0.78%	0.29			
Biochar	6.375	-0.78%	0.33			
Com+Biochar	6.25	-2.72%	0.24			
	pl					
AVERAGES	рН	% difference	ST DEV			
Control	3.3925	0.00%	0.08			
Compost	3.4125	0.59%	0.09			
Biochar	3.4275	1.03%	0.12			
Com+Biochar	3.4575	1.92%	0.09			
	Bri					
AVERAGES	brix	% difference	ST DEV			
Control	23.875	0.00%	1.01			
Compost	23.35	-2.20%	0.47			
Biochar	24.25	1.57%	0.99			
Com+Biochar	23.75	-0.52%	0.87			

4th Leaf Grape Quality

Harvest 2020 4th Leaf	Yield	Cluster #	Cluster lb
R1	9.22	54.60	0.31
R2 Control	10.12	53.95	0.34
R3	8.66	46.60	0.34
R4	8.00	41.85	0.35
Control Average	9.00	49.25	0.34
R1	10.37	55.25	0.34
R2 Compost	10.72	54.30	0.36
R3	11.39	62.60	0.33
R4	10.68	54.45 _m	0.36
Compost Average	10.79	56.65	0.35
R1	10.71	57.00	0.34
R2 Biochar	10.79	57.40	0.35
R3	10.72	58.50	0.34
R4	8.27	45.55	0.33
Biochar Average	10.12	54.61	0.34
R1	11.21	58.80	0.35
R2 Compost + Biochar	10.23	55.15	0.34
R3	13.09	65.10	0.37
R4	9.57	49.85	0.35
Compost-Bio Average	11.02	57.23	0.35

AVERAGES	g/berry	% difference	ST DEV
Control	1.3675	0.00%	0.02
Compost	1.33	-2.74%	0.05
Biochar	1.3925	1.83%	0.05
Com+Biochar	1.3575	- <mark>0.73%</mark>	0.02
	Berry Volum	e	-
AVERAGES	ml/berry	% difference	ST DEV
Control	1.1475	0.00%	0.04
Compost	1.185	3.27%	0.07
Biochar	1.24	8.06% 🤄	0.08
Com+Biochar	1.15	0.22%	0.03
	Sugar per Be	erry	
AVERAGES	mg/berry	% difference	ST DEV
Control	271.5	0.00%	12.48
Compost	273	0.55%	16.15
Biochar	298.5	9.94% 🤄	12.79
Com+Biochar	270.5	-0.37%	16. <mark>8</mark> 2

4th Leaf Berry Size

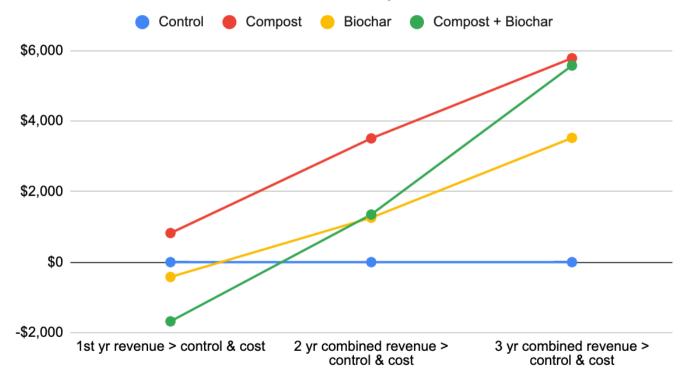
Harvest 2020 4th Leaf	Yield	Cluster #	Cluster lb
R1	9.22	54.60	0.31
R2 Control	10.12	53.95	0.34
R3	8.66	46.60	0.34
R4	8.00	41.85	0.35
Control Average	9.00	49.25	0.34
R1	10.37	55.25	0.34
R2 Compost	10.72	54.30	0.36
R3	11.39	62.60	0.33
R4	10.68	54.45 _m	0.36
Compost Average	10.79	56.65	0.35
R1	10.71	57.00	0.34
R2 Biochar	10.79	57.40	0.35
R3	10.72	58.50	0.34
R4	<mark>8.27</mark>	45.55	0.33
Biochar Average	10.12	54.61	0.34
R1	11.21	58.80	0.35
R2 Compost + Biochar	10.23	55.15	0.34
R3	13.09	65.10	0.37
R4	9.57	49.85	0.35
Compost-Bio Average	11.02	57.23	0.35

Polymeric Anthocyanins						
AVERAGES	mg/L	% difference	ST DEV			
Control	6.25	0.00%	0.9574			
Compost	6.00	-4.00%	0.0000			
Biochar	6.50	4.00% 🧲	0.5774			
Com+Biochar	5.75	-8.00%	0.5000			
	Tannin					
AVERAGES	mg/L	% difference	ST DEV			
Control	207.50	0.00%	18.9473			
Compost	200.25	-3.49%	18.9978			
Biochar	211.75	2.05% 🧲	22.3961			
Com+Biochar	201.00	-3.13%	20.4124			
	Total Antho	cyanins				
AVERAGES	mg/L	% difference	ST DEV			
Control	627.50	0.00%	63.1057			
Compost	628.50	0.16%	15.3514			
Biochar	659.75	5.14% 🤄	49.5202			
Com+Biochar	642.50	2.39%	60.7317			

4th Leaf Grape Color?

Harvest 2020 4th Leaf	Yield	Cluster #	Cluster lb
R1	9.22	54.60	0.31
R2 Control	10.12	53.95	0.34
R3	8.66	46.60	0.34
R4	8.00	41.85	0.35
Control Average	9.00	49.25	0.34
R1	10.37	55.25	0.34
R2 Compost	10.72	54.30	0.36
R3	11.39	62.60	0.33
R4	10.68	54.45 <u>-</u>	0.36
Compost Average	10.79	56.65	0.35
R1	10.71	57.00	0.34
R2 Biochar	10.79	57.40	0.35
R3	10.72	58.50	0.34
R4	8.27	45.55	0.33
Biochar Average	10.12	54.61	0.34
R1	11.21	58.80	0.35
R2 Compost + Biochar	10.23	55.15	0.34
R3	13.09	65.10	0.37
R4	9.57	49.85	0.35
Compost-Bio Average	11.02	57.23	0.35

Economic Return Assessment on Biochar-Only Application


- Yield Increase 3rd Leaf
 - 2019 +biochar=1.3 ton/acre increase
 Grape price \$1500/ton
 - Additional revenue/acre = \$1,950
- Yield Increase 4th Leaf
 - 2020 +biochar = 1.1 ton/acre
 increase
 - Grape price \$1500/ton
 - Additional revenue/acre = **\$1,650**
 - No further amendments cost
- Yield Increase 5th Leaf
 - 2021 +biochar = 1.5 ton/acre increase
 - Grape price \$1500/ton
 - Additional Revenue = **\$2,250**

- Biochar cost
 - 10 ton/acre
 - Biochar cost \$240 per ton
 - Cost/acre = **\$2,400**
- Return on Investment
 - Additional revenue
 \$5,850/ac first 3 producing
 years, <u>\$3450 above cost</u>

Additional revenue above cost for inputs

Biochar + Compost

CO-COMPOSTING, BLENDING, & AGING

• Compost is improved

- Odor control (i.e. ammonia)
- GHG emission reduction (i.e. CH_4 , N_2O , etc.)
- Reduced nutrient loss, especially N
- Increased microbial activity & diversity
- Maturity and stability superior

• Biochar is improved

- Complexed surface becomes more functional
- Microbial colonization
- Nutrient loading
- Better plant growth response

Compost and biochar blend, side-dressed in existing vineyard

Supplier	Project(s)	Location	Туре	Description	Newly contracted volume (mtCO ₂)	Certification	Contracted durability (years)
Carbonfuture GmbH	Pacific Biochar	California	Biochar	Biochar produced from feedstock to directly lower water consumption of drought-stricken agricultural areas or as soil enrichment with compost additives	1,500	European Biochar Certificate	>100

United States

Department of

Agriculture

Natural Resources Conservation Service

Environmental Quality Incentives Program

The Environmental Quality Incentives Program (EQIP) provides financial and technical assistance to agricultural producers and non-industrial forest managers to address natural resource concerns and deliver environmental benefits such as improved water and air quality, conserved ground and surface water, increased soil health and reduced soil erosion and sedimentation, improved or created wildlife habitat, and mitigation against drought and increasing weather volatility.

A United States Department of Agriculture Natural Resources Conservation Service

Environmental Quality Incentives Program

Fiscal Year 2022

Code	Practice	Component	Units	Unit Cost
808	Soil Carbon Amendment	100% Biochar	Ac	\$806.94
808	Soil Carbon Amendment	HU-100% Biochar	Ac	\$968.33

hank you

NOTI

Questions?